:
ГлавнаяПроцессы перемешиванияМеханические перемешивающие устройства

Расчеты

Продукция

Механические перемешивающие устройства

Механические перемешивающие устройства состоят из трех основных частей: собственно мешалки, вала и привода. Мешалка является рабочим элементом устройства, закрепляемым на вертикальном, горизонтальном или наклонном валу. Привод может быть осуществлен либо непосредственно от электродвигателя (для быстроходных мешалок), либо через редуктор или клиноременную передачу. По устройству лопастей различают мешалки лопастные, пропеллерные, турбинные и специальные. По типу создаваемого мешалкой потока жидкости в аппарате различают мешалки, обеспечивающие преимущественно тангенциальное, радиальное и осевое течения.При тангенциальном течении жидкость в аппарате движется преимущественно по концентрическим окружностям, параллельным плоскости вращения мешалки. Перемешивание происходит за счет вихрей, возникающих на кромках мешалки. Качество перемешивания будет наихудшим, когда скорость вращения жидкости равна скорости вращения мешалки.

Радиальное течение характеризуется направленным движением жидкости от мешалки к стенкам аппарата перпендикулярно оси вращения мешалки. Осевое течение жидкости направлено параллельно оси вращения мешалки.

В промышленных аппаратах с мешалками возможны различные сочетания этих основных типов течения. Тип создаваемого потока, а также конструктивные особенности мешалок определяют области их применения. При высоких скоростях вращения мешалок перемешиваемая жидкость вовлекается в круговое движение и вокруг вала образуется воронка, глубина которой увеличивается с возрастанием числа оборотов и уменьшением плотности и вязкости среды. Для предотвращения образования воронки в аппарате помещают отражательные перегородки, которые, кроме того, способствуют возникновению вихрей и увеличению турбулентности системы. Образование воронки можно предотвратить и при полном заполнении жидкостью аппарата, т. е. при отсутствии воздушной прослойки между перемеши­ваемой жидкостью и крышкой аппарата, а также при установке вала мешалки эксцентрично к оси аппарата или применении аппарата пря­моугольного сечения.

Помимо этого, отражательные перегородки устанавливают во всех случаях при перемешивании в системах газ—жидкость. Применение отражательных перегородок, а также эксцентричное или наклонное рас­положение вала мешалки приводит к увеличению потребляемой ею мощности.

Мешалки лопастного типа. Лопастными мешалками называются устройства, состоящие из двух или большего числа лопастей прямоугольного сечения, закрепленных на вращающемся вертикальном или наклонном валу (рис. 3). К лопастным мешалкам относятся также и некоторые мешалки специального назначения: якорные, рамные и листовые. Основные достоинства лопастных мешалок — простота устройства и невысокая стоимость изготовления. К недостаткам мешалок этого типа следует отнести низкое насосное действие мешалки (слабый осевой поток), не обеспечивающее достаточно полного перемешивания во всем объеме аппарата. Вследствие незначительности осевого потока лопастные мешалки

Рис.3 Лопастная мешалка

перемешивают только те слои жидкости, которые находятся в непосредственной близости от лопастей мешалки. Развитие турбулентности в объеме перемешиваемой жидкости происходит медленно, циркуляция жидкости невелика. Поэтому лопастные мешалки применяют для перемешивания жидкостей, вязкость которых не превышает 103 мн . сек/м2. Эти мешалки непригодны для перемешивания в протоке, например в аппаратах непрерывного действия. Некоторое увеличение осевого потока жидкости достигается при наклоне лопастей под углом 30—45° к оси вала. Такая мешалка способна удерживать во взвешенном состоянии частицы, скорость осаждения которых невелика. С целью увеличения турбулентности среды при перемешивании ло­пастными мешалками в аппаратах с большим отношением высоты к диа­метру используют многорядные двухлопастные мешалки с установкой на валу нескольких рядов мешалок, повернутых друг относительно друга на 90°. Расстояние между отдельными рядами выбирают в пределах (0,3—0,8d), где d — диаметр мешалки, в зависимости от вязкости перемешиваемой среды.Для перемешивания жидкостей вязкостью не более 104 мн . сек/м2, а также для перемешивания в аппаратах, обогреваемых с помощью рубашки или внутренних змеевиков, в тех случаях, когда возможно выпа­дение осадка или загрязнение теплопередающей поверхности, применяют якорные (рис.4) или рамные (рис.5) мешалки. Они имеют форму, соответствующую внутренней форме аппарата, и диаметр, близкий к внутреннему диаметру аппарата или змеевика. При вращении эти мешалки очищают стенки и дно аппарата от налипающих загрязнений,

Рис. 4.Якорная мешалка.

Рис. 5. Рамная мешалка.

Рис. 6. Листовая мешалка .

Листовые мешалки (рис.6) имеют лопасти большей ширины, чем у лопастных мешалок, и относятся к мешалкам, обеспечивающим тангенциальное течение перемешиваемой среды. Кроме чисто тангенциального потока, который является преобладающим, верхние и нижние кромки мешалки создают вихревые потоки, подобные тем, которые возникают при обтекании жидкостью плоской пластины с острыми краями. При больших скоростях вращения листовой мешалки на тангенциальный поток накладывается радиальное течение, вызванное центробежными силами. Листовые мешалки применяют для перемешивания маловязких жидкостей (вязкостью менее 50 мн . сек/м2), интенсификации процессов теплообмена, при растворении. Для процессов растворения используют листовые мешалки с отвер­стиями в лопастях. При вращении такой мешалки на выходе из отверстий образуются струи, способствующие растворению твердых материалов.Основные размеры лопастных мешалок изменяются в зависимости от вязкости среды. Обычно для лопастных мешалок принимают следу­ющие соотношения размеров: диаметр мешалки d = (0,66-0,9)D (D— внутренний диаметр аппарата), ширина лопасти мешалки b = (0,1 - 0,2)D, высота уровня жидкости в сосуде H= (0,8-1,3)D, расстояние от мешалки до дна сосуда h d 0,3D. Для листовых мешалок d= (0,3-0,5) D, b= (0,5-1,0)D, h = (0,2-0,5) D. Окружная скорость лопастных и листовых мешалок в зависимости от вязкости перемешиваемой среды может изменяться в широких пределах (от 0,5 - 5,0 сек-1), причем с увеличением вязкости и ширины лопасти скорость вращения мешалки уменьшается. При высоких скоростях вращения лопастных мешалок в аппарате устанавливают отражательные перегородки. Листовые мешалки, как пра­вило, без отражательных перегородок не применяют. Пропеллерные мешалки. Рабочей частью пропеллерной мешалки является пропеллер (рис.7) — устройство с несколькими фасонными лопастями, изогнутыми по профилю гребного винта. Наибольшее распространение получили трехлопастные пропеллеры. На валу мешалки, который может быть расположен вертикально, горизонтально или наклонно, в зависимости от высоты слоя жидкости устанавливают один или несколько пропеллеров. Вследствие более обтекаемой формы пропеллерные мешалки при одинаковом числе Рейнольдса потребляют меньшую мощность, чем мешалки прочих типов (см. рис.1, кривая 6). К достоинствам пропеллерных мешалок следует отнести также относительно высокую скорость вращения и возможность непосредственного присоединения мешалки к электродвигателю, что приводит к уменьшению механических потерь.

Рис.7 Пропеллерная мешалка.

Рис.8. Пропеллерная мешалка с диффузором: 1— корпус аппарата; 2 — вал; 3 — пропеллер; 4 - диффузор.

Пропеллерные мешалки создают преимущественно осевые потоки перемешиваемой среды и, как следствие этого,— большой насосный эффект, что позволяет существенно сократить продолжительность перемешивания. Вместе с тем пропеллерные мешалки отличаются сложностью конструкции и сравнительно высокой стоимостью изготовления. Их эффективность сильно зависит от формы аппарата и расположения в нем мешалки. Пропеллерные мешалки следует применять в цилиндрических аппаратах с выпуклыми днищами. При установке их в прямоугольных баках или аппаратах с плоскими или вогнутыми днищами интенсивность перемешивания падает вследствие образования застойных зон.

Для улучшения перемешивания больших объемов жидкостей и организации направленного течения жидкости (при большом отношении высоты к диаметру аппарата) в сосудах устанавливают направляющий аппарат, или диффузор (рис. 8). Диффузор представляет собой короткий цилиндрический или конический стакан, внутри которого помещают мешалку. При больших скоростях вращения мешалки в отсутствие диффузора в аппарате устанавливают отражательные перегородки. Пропеллерные мешалки применяют для перемешивания жидкостей вязкостью не более 2.103 мн сек/м2, для растворения, образования взвесей, быстрого перемешивания, образования маловязких эмульсий и гомогенизации больших объемов жидкости.Для пропеллерных мешалок принимают следующие соотношения основных размеров: диаметр мешалки d= (0,2—0,5) D, шаг винта s=(1,0— 3,0) D, расстояние от мешалки до дна сосуда h=(0,5—1,0) d, высота уровня жидкости в сосуде Н=(0,8—1,2)D. Число оборотов про­пеллерных мешалок достигает 40 в секунду, окружная скорость — 15 м/сек.

Турбинные мешалки. Эти мешалки имеют форму колес водяных турбин с плоскими, наклонными или криволинейными лопатками, укрепленными, как правило, на вертикальном валу (рис. 9). В аппаратах с турбинными мешалками создаются преимущественно радиальные потоки жидкости. При работе турбинных мешалок с большим числом оборотов наряду с радиальным потоком возможно возникновение тангенциального (кругового) течения содержимого аппарата и образование воронки. В этом случае в аппарате устанавливают отражательные перегородки. Закрытые турбинные мешалки (рис. 9) в отличие от открытых (рис. 9, а, б, в) создают более четко выраженный радиальный поток. Закрытые мешалки имеют два диска с отверстиями в центре для прохода жидкости; диски сверху и снизу привариваются к плоским лопастям. Жидкость поступает в мешалку параллельно оси вала, выбрасывается мешалкой в радиальном направлении и достигает наиболее удаленных точек аппарата. Турбинные мешалки обеспечивают интенсивное перемешивание во всем объеме аппарата. При больших значениях отношения высоты к диаметру аппарата применяют многорядные турбинные мешалки. Мощность, потребляемая турбинными мешалками, работающими в аппаратах с отражательными перегородками, при турбулентном режиме переме­шивания практически не зависит от вязкости среды. Поэтому мешалки этого типа могут применяться для смесей, вязкость которых во время перемешивания изменяется.

Рис. 9. Турбинные мешалки:

а – открытая с прямыми лопатками

б – открытая криволинейными лопатками

в – открытая с наклонными лопатками

г – закрытая с направляющим аппаратом

1 – турбинная мешалка

2 – направляющий аппарат

Турбинные мешалки широко применяют для образования взвесей (размер частиц для закрытых мешалок может достигать 25 мм, растворения, абсорбции газов и интенсификации теплообмена. Для перемешивания в больших объемах (например, при гомогенизации жидкостей в хранилищах, объем которых достигает 2500 м3 и более) турбинные мешалки менее пригодны, чем пропеллерные мешалки или сопла (см. ниже). В зависимости от области применения турбинные мешалки обычно имеют диаметр d= (0,15—0,65) D при отношении высоты уровня жидкости к диаметру аппарата не более двух. При больших значениях этого отношения используют многорядные мешалки.Число оборотов мешалки колеблется в пределах 2—5 в секунду, а окружная скорость составляет 3—8 м/сек.

Специальные мешалки. К этой группе относятся мешалки, имеющие более ограниченное применение, чем мешалки рассмотренных выше типов.

Барабанные мешалки (рис. 10) состоят из двух цилиндрических колец, соединенных между собой вертикальными лопастями прямоугольного сечения. Высота мешалки составляет 1,5—1,6 ее диаметра. Мешалки этой конструкции создают значительный осевой поток и применяются (при отношении высоты столба жидкости в аппарате к диаметру барабана не менее 10) для проведения газожидкостных реакций, получения эмульсий и взмучивания осадков.

Дисковые мешалки (рис.11) представляют собой один или несколько гладких дисков, вращающихся с большой скоростью на вертикальном валу. Течение жидкости в аппарате происходит в тангенциальном направлении за счет трения жидкости о диск, причем сужающиеся диски создают также осевой поток. Иногда края диска делают зубчатыми. Диаметр диска составляет 0,1—0,15 диаметра аппарата. Окружная скорость равна 35 м/сек, что при небольших размерах диска соответствует очень высоким числам оборотов. Потребление энергии колеблется от 0,5 кВт для маловязких сред до 20 кВт для вязких смесей. Дисковые мешалки применяются для перемешивания жидкостей в объемах до 4 м3.

Вибрационные мешалки имеют вал с закрепленными на нем одним или несколькими перфорированными дисками (рис. 12). Диски совершают возвратно-поступательное движение, при котором достигается интенсивное перемешивание содержимого аппарата. Энергия, потребляемая мешалками этого типа, невелика. Они используются для перемешивания жидких смесей и суспензий преимущественно в аппаратах, работающих под давлением. Время, необходимое для растворения, гомогенизации, диспергирования при использовании вибрационных мешалок, значительно сокращается. Поверхность жидкости при перемешивании этими мешалками остается спокойной, воронки не образуется. Вибрационные мешалки изготовляются диаметром до 300 мм и применяются в аппаратах емкостью не более 3 м3.

Рис. 10. Барабанная мешалка.

Рис. 11. Дисковая мешалка.

Рис. 12. Устройство дисков вибрационных мешалок.

4. Пневматическое перемешивание

Пневматическое перемешивание сжатым инертным газом или воздухом используют, когда перемешиваемая жидкость отличается большой химической активностью и быстро разрушает механические мешалки. Перемешивание сжатым газом является малоинтенсивным процессом. Расход энергии при пневматическом перемешивании больше, чем при механическом. Пневматическое перемешивание не применяют для обработки летучих жидкостей в связи со значительными потерями перемешиваемого продукта. Перемешивание воздухом может сопровождаться окислением или осмолением веществ. Перемешивание сжатым газом проводят в аппаратах, снабженных специальными устройствами — барботером или центральной циркуляционной трубой. Барботер представляет собой расположенные по дну аппарата трубы с отверстиями, с помощью которых осуществляется барботаж газа через слой обрабатываемой жидкости. При циркуляционном (эрлифтном) перемешивании газ подают в циркуляционную трубу. Пузырьки газа увлекают за собой вверх по трубе жидкость, находящуюся в сосуде, которая затем опускается вниз в кольцевом пространстве между трубой и стенками аппарата, обеспечивая циркуляционное перемешивание жидкости. При расчете пневматических мешалок определяют необходимое давление и расход газа. Давление газа может быть рассчитано с помощью уравнения Бернулли:

где

H – высота столба перемешивания жидкости,

скорость воздуха в трубе ( –40 м/сек),

и - плотность перемешиваемой жидкости и газа,

- сумма коэффициентов местных сопротивлений,

- коэффициент трения,

l и d– длина и диаметр трубы,

p0 – давление над жидкостью в аппарате.

Для ориентировочных расчетов потери давления в трубопроводе можно принимать равными ~20% сопротивления столба жидкости. Тогда уравнение Бернулли принимает вид:

Объемный расход газа V3/ч) можно определить по эмпирической формуле V=kFp, где

F — поверхность спокойной жидкости в аппарате, м2; р— давление воздуха, бар; k— опытный коэффициент.

При слабом перемешивании k= 0,24—0,30, при малоинтенсивном 0,35—0,50 и интенсивном 0,45—0,60. Расчет по формуле дает значение объемного расхода газа при давлении, равном 1 бару. При расчете барботеров расход воздуха на 1 м2 свободной поверх­ности можно принимать равным: для слабого перемешивания — 0,4 м3/мин, для среднего — 0,8 м3/мин для интенсивного—1,0 м3/мин.

5. Циркуляционное и поточное перемешивание.

При транспортировании жидкости по данным трубам с большой скоростью происходит интенсивное перемешивание – турбулизация потока. Поэтому для перемешивания жидкостей, содержащихся в аппарате, достаточно поставить рядом с аппаратом циркуляционный насос, который в течение некоторого времени будет перекачивать жидкость. Такое перемешивание называют циркуляционным. Эффективность перемешивания значительно возрастает, если жидкость в аппарате распыляется или вводится тангенциально. Интенсивность циркуляционного перемешивания зависит от расхода жидкости в циркуляционном насосе и объёма самого аппарата. Для смешивания чистых жидкостей, например, спирта-сырца и воды при ректификации спирта, используют струйные насосы. При этом перемешивание происходит в потоке и называется поточным. Для перемешивания невязких жидкостей в трубопроводах устраивают смесители, рабочий орган которых выполнен из последовательно установленных разнозакрученных шнеков или турбинок. Поточное перемешивание осуществляется за счёт кинетической энергии потоков. Эти же устройства можно использовать для перемешивания жидкостей и газов.

В бродильных производствах применяют полочные смесители. На полках смешивается патока и вода. При этом холодная и горячая вода подаётся на разные полки по зонам, что позволяет поддерживать заданную температуру.

6. Перемешивание сыпучих материалов

В пищевых производствах часто требуется составить смесь из нескольких сухих сыпучих компонентов. Наиболее распространены в пищевой промышленности шнековые смесители, рабочим органом которых является один или несколько шнеков. Хорошее перемешивание сыпучих материалов достигается во вращающихся барабанах. Ось вращения барабана наклонена к горизонту, и это обеспечивает перемещение материала не только в вертикальной плоскости, но и вдоль оси барабана. Барабаны вращаются, как правило, с малой частотой (5…10 об/мин). Для увеличения высоты подъёма материала на внутренней поверхности барабана устраивают специальные лопатки. Процессы перемешивания сыпучих материалов можно интенсифицировать, применяя механические вибрации, сопровождающие перемешивание шнеками, или вращающимися на валу лопатками. Такие устройства называют вибросмесителями.

Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. | Карта сайта

142400 Московская обл, г. Ногинск, а/я 825

Московская обл, г. Ногинск, ул. Климова, 50